Games, graphs, and machines

Partial orders 2

August 7, 2024

٠

Product poset

Let \leq be the usual order on \mathbb{R} . Define \preceq on $\mathbb{R} \times \mathbb{R}$ by

$$(a,b) \preceq (c,d)$$
 if $a \leq b$ and $c \leq d$.
 $a \leq c$ and $b \leq d$

- 1. Give an example of two incomparable elements under \leq . (O_13) , (I_12)
- 2. Plot all elements that are $\leq (2,3)$.
- 3. Plot all elements (x, y) with $(1, 1) \leq (x, y) \leq (2, 3)$.

Max/min

In all the examples so far, identify the maximum (if it exists), the minimum (if it exists), all maximal elements, all minimal elements.

Immediate successors

Immediate successors

Let S be the poset of words with \leq given by prefix.

- What are the immediate successors of "ant"?
- What is an element that succeeds "ant" but is not an immediate successor?

.

Find a rank function on the following poset.

Rank functions

Find a rank function on the following poset.

Chains

A *chain* in a poset is a sequence of elements a_1, \ldots, a_n such that

$$a_1 \preceq a_2 \preceq \cdots \preceq a_n$$
.

The number *n* is the *length* of the chain.

Find a chain of length 3 in the subset poset of $\{1, 2, 3, 4\}$.

Maximal chains

- What could be the meaning of a *maximal chain*?
- Find a maximal chain in the subset poset of $\{1, 2, 3, 4\}$.

Maximal chains

• Prove that any maximal chain in the subset poset of $\{1,\cdots,100\}$ has length 100.

Maximal chains

- Prove that any maximal chain in the subset poset of $\{1,\cdots,100\}$ has length 100.
- Is a similar statement true for the divisor poset of 100?

A theorem

A poset in which all maximal chains have the same (finite) length is called a *graded poset*.

Theorem

A graded poset of length n has a rank function.

Verify the theorem for the subset poset of $\{1, \ldots, n\}$.